Conductance of carbon nanotubes with disorder: A numerical study
نویسندگان
چکیده
We study the conductance of carbon nanotube wires in the presence of disorder, in the limit of phase coherent transport. For this purpose, we have developed a simple numerical procedure to compute transmission through carbon nanotubes and related structures. Two models of disorder are considered, weak uniform disorder and isolated strong scatterers. In the case of weak uniform disorder, our simulations show that the conductance is not significantly affected by disorder when the Fermi energy is close to the band center. Further, the transmission around the band center depends on the diameter of these zero bandgap wires. We also find that the calculated small bias conductance as a function of the Fermi energy exhibits a dip when the Fermi energy is close to the second subband minima. In the presence of strong isolated disorder, our calculations show a transmission gap at the band center, and the corresponding conductance is very small. (Article appeared in Physical Review B volume 58, page 4882 (1998))
منابع مشابه
A First-Principles Study on Interaction between Carbon Nanotubes (10,10) and Gallates Derivatives as Vehicles for Drug Delivery
First principles calculations were carried out for investigation the novel 7-hydroxycoumarinyl gallates derivatives in gas and liquid phases using density functional theory (DFT) method. Computational chemistry simulations were carried out to compare calculated quantum chemical parameters for gallates derivatives. All calculations were performed using DMol3 code which is based on DFT. The Doubl...
متن کاملInclined Lorentzian force effect on tangent hyperbolic radiative slip flow imbedded carbon nanotubes: lie group analysis
The present paper focuses on numerical study for an inclined magneto-hydrodynamic effect on free convection flow of a tangent hyperbolic nanofluid embedded with Carbon nanotubes (CNTs) over a stretching surface taking velocity and thermal slip into account. Two types of nanoparticles are considered for the study; they are single and multi-walled nanotubes. The presentation of single-parameter g...
متن کاملDisorder effects and electronic conductance in metallic carbon nanotubes
Disorder effects on density of states and electronic conduction in metallic carbon nanotubes are analyzed by a tight binding model with Gaussian bond disorder. Metallic armchair and zigzag nanotubes are considered. We obtain a conductance which becomes smaller by the factor of the inverse of a few from that of the clean nanotube. This decrease mainly comes from lattice fluctuations of the width...
متن کاملZero-bias conductance in carbon nanotube quantum dots.
We present numerical renormalization group calculations for the zero-bias conductance of quantum dots made from semiconducting carbon nanotubes. These explain and reproduce the thermal evolution of the conductance for different groups of orbitals, as the dot-lead tunnel coupling is varied and the system evolves from correlated Kondo behavior to more weakly correlated regimes. For integer fillin...
متن کاملTransport properties in network models with perfectly conducting channels
We study the transport properties of disordered electron systems that contain perfectly conducting channels. Two quantum network models that belong to different universality classes, unitary and symplectic, are simulated numerically. The perfectly conducting channel in the unitary class can be realized in zigzag graphene nano-ribbons and that in the symplectic class is known to appear in metall...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998